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Abstract

What are the effects of word-by-word predictability on sentence processing times during the

natural reading of a text? Although information complexity metrics such as surprisal and entropy

reduction have been useful in addressing this question, these metrics tend to be estimated using

computational language models, which require some degree of commitment to a particular theory

of language processing. Taking a different approach, this study implemented a large-scale cumula-

tive cloze task to collect word-by-word predictability data for 40 passages and compute surprisal

and entropy reduction values in a theory-neutral manner. A separate group of participants read the

same texts while their eye movements were recorded. Results showed that increases in surprisal

and entropy reduction were both associated with increases in reading times. Furthermore, these

effects did not depend on the global difficulty of the text. The findings suggest that surprisal and

entropy reduction independently contribute to variation in reading times, as these metrics seem to

capture different aspects of lexical predictability.
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1. Introduction

The predictability of a word in context is known to be one of the most important fac-

tors affecting the targeting of saccades and duration of fixations during reading (for

reviews, see Clifton et al., 2016; Rayner, 1998; Staub, 2015). Although this basic finding

is virtually undisputed, there is considerably less agreement regarding how best to
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conceptualize lexical predictability in a way that is ecologically valid and nuanced, as

compared to the stark contrasts that tend to be employed in experimental investigations.

The earliest work on this topic demonstrated effects of lexical predictability using experi-

mental manipulations as in (1) that capitalize on systematic differences in cloze probabil-
ity (Taylor, 1953), or the proportion of participants who provide a particular target word

as a completion of an initial sentence stem. Many eyetracking experiments have demon-

strated robust effects of predictability in contexts like these, such that predictable words

(e.g., cake in 1a) are skipped more often and elicit shorter fixation durations when they

are fixated compared to less predictable words (e.g., pies in 1b) (e.g., Balota, Pollatsek,

& Rayner, 1985; Choi, Lowder, Ferreira, Swaab, & Henderson, 2017; Drieghe, Rayner,

& Pollatsek, 2005; Ehrlich & Rayner, 1981; Rayner & Well, 1996).

(1a) Since the wedding was today, the baker rushed the wedding cake to the reception.
(1b) Since the wedding was today, the baker rushed the wedding pies to the reception.

Experimental results using comparisons like these have been extremely useful in devel-

oping models of eye-movement control during reading (e.g., Engbert, Nuthmann, Richter,

& Kliegl, 2005; Reichle, Rayner, & Pollatsek, 2003). Beyond the eyetracking domain,

cloze probability has been shown to reliably modulate the brain’s response to lexical pre-

dictability, as evidenced by reduced amplitude of the N400 event-related potential (ERP)

component for predictable versus unpredictable words (e.g., Federmeier & Kutas, 1999;

Kutas & Hillyard, 1984). In addition, one of the reasons this approach is so popular stems

from its face validity—that is, the cloze task is intuitively appealing as a method for

quantifying predictability because the cloze probabilities for each target word are derived

from samples of participants whose explicit task is to guess the next word of the sen-

tence.

At a theoretical level, questions about lexical predictability factor into a broader trend

in cognitive science that casts prediction as a core explanatory principle of information

processing (Clark, 2013). Under such a predictive processing framework, the brain uses

relevant contextual knowledge to preactivate features of an upcoming stimulus or event

before it is perceived, which leads to processing facilitation when the perception matches

the prediction, or error-driven learning when the two do not match. Indeed, this view has

become quite popular in the sentence-processing literature, with a growing body of evi-

dence now suggesting that language comprehenders can rapidly generate predictions

about upcoming input—from lower levels of sublexical and lexical representations up to

higher levels of representation associated with event structures and schematic knowledge

(see Kuperberg & Jaeger, 2016, for a recent review).

Although results from cloze experiments are sometimes taken as evidence supporting

the predictive nature of human sentence processing, it is important to note the drawbacks

of this task as it is typically used that limit its generalizability. A cloze task normally

includes a single target word per sentence in which the researcher’s goal is to obtain a

high cloze and low cloze completion for each item. As a result, these sentences tend to

be highly constraining by design, to maximize the chances that a highly predictable
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completion will be produced (Ferreira & Lowder, 2016). This strategy is designed to

ensure that a predictability effect will be observed between the high cloze and low cloze

conditions in the main experiment. As a result, artificially constraining sentences that

have been constructed to create strong predictions cannot be viewed as compelling evi-

dence for the existence of an inherently predictive language processing system.

Moving away from the traditional cloze task, Luke and Christianson (2016) recently

reported a large-scale study in which cloze values were obtained for every word across

several multi-sentence texts. Values from this cumulative cloze task were then used to

model eyetracking data to better understand the relationships between lexical prediction

and online processing. Their results showed a facilitative effect of cloze probability on

processing times—a relationship that emerged across the full range of cloze values and

affected early and later eye-movement measures. Furthermore, Luke and Christianson

conducted a careful analysis of instances of misprediction (i.e., instances in which a word

other than the target word was strongly predicted). Their results showed no evidence of a

processing cost for these cases of misprediction, but rather some evidence that processing

was facilitated when a given target word has a more expected competitor. These results

suggest that prediction during reading occurs in a graded fashion, rather than the strict

all-or-none process that often characterizes lexical prediction.

In addition to the cloze approach, we have recently seen the development of computa-

tional models of sentence processing that aim to quantify predictability for every word of

a sentence probabilistically. This approach combines foundational work from information

theory (Shannon, 1948) with more recent advances in computational language modeling

to generate estimates of information complexity at each word of the sentence that can

then be related to online sentence processing measures (Hale, 2001; Levy, 2008). The

most common of these metrics is surprisal, defined as the negative log probability of a

word, given its preceding context: surprisal (wi) = �log P(wi|w1. . .wi�1). As such, sur-

prisal measures the relative unexpectedness of a word in context. In addition, sophisti-

cated computational language models make it simple to estimate surprisal values for any

input sentence, thus making it possible to investigate word-by-word predictability for sen-

tences that are not artificially constraining. Using this approach, many studies have now

demonstrated a relationship between surprisal and online sentence processing measures.

For example, higher surprisal values have been shown to be associated with longer read-

ing times (Boston, Hale, Kliegl, Patil, & Vasishth, 2008; Demberg & Keller, 2008; Smith

& Levy, 2013), larger N400 amplitudes in ERP research (Frank, Otten, Galli, & Vig-

liocco, 2015), and increased activation in several language-related brain areas as mea-

sured by functional MRI (Brennan, Stabler, Van Wagenen, Luh, & Hale, 2016;

Henderson, Choi, Lowder, & Ferreira, 2016; Willems, Frank, Nijhof, Hagoort, & van den

Bosch, 2016).

A different information complexity metric that has received less attention in the sen-

tence-processing literature is entropy, a measure designed to quantify the degree of uncer-

tainty about what is being communicated as a sentence unfolds.1 The entropy H of the

probability distribution over X is represented as a function of the probabilities of the vari-

ous possible outcomes:
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HðXÞ ¼ �
X

x2X
PðxÞlog2PðxÞ

Thus, higher entropy is associated with more uncertainty about the value of x, such
that entropy is maximal when all possible values of x have the same probability, and

entropy is zero when there is 100% certainty about the value of x.
Importantly though, entropy fluctuates as we encounter each new word, with incoming

words affecting expectations regarding what will come next. This observation led Hale

(2003, 2006, 2011) to propose entropy reduction as a key complexity metric to represent

the amount of information gained at each word. So, if entropy at word wi is represented

as Hi, then entropy reduction at wi is computed as Hi � Hi�1. The fundamental idea is

that if entropy is reduced from one word to the next, then communicative uncertainty has

been reduced, and the comprehender has done information-processing work. In contrast,

cases in which entropy increases from one word to the next are represented as zero, under

the assumption that an increase in uncertainty should not affect processing. The important

claim is that surprisal and entropy reduction capture unique aspects of information com-

plexity and, as such, should both serve as useful metrics for quantifying word-by-word

predictability during incremental sentence processing (Hale, 2016).

Although some have expressed skepticism regarding the usefulness of entropy reduc-

tion as a complexity metric (Levy, Fedorenko, & Gibson, 2013; Levy & Gibson, 2013),

there is growing evidence suggesting that entropy reduction is in fact a significant predic-

tor of sentence-processing times. Indeed, several studies have now shown that greater sur-

prisal and greater entropy reduction independently contribute to increased reading times

(Frank, 2013; Linzen & Jaeger, 2016; Wu, Bachrach, Cardenas, & Schuler, 2010). Two

methodological points about this previous work are worth noting though. First, all three

of these studies used self-paced reading as their dependent measure. Although self-paced

reading is a commonly used approach in psycholinguistic research, it does not accurately

reflect the normal reading process, as it tends to be rather slow, prone to strategic pro-

cessing, and prohibits the reader from gaining parafoveal preview information or regress-

ing to previous portions of the text. Second, all three of these studies estimated their

measures of surprisal and entropy reduction using some form of statistical language

model, including a recurrent neural network model (Frank, 2013), an algorithmic parser

operating within a probabilistic context-free grammar (Linzen & Jaeger, 2016), and a

hierarchical hidden Markov model (Wu et al., 2010).

Indeed, most of the previous work aimed at relating metrics like surprisal and entropy

reduction to human sentence-processing data estimate these metrics using computational

sentence parsers or some other type of statistical language model. As noted above, this

approach has an advantage over the traditional cloze task in that values can be estimated

for every word in the sentence, allowing researchers to study naturalistic sentences as

opposed to sentences designed to be artificially constraining. However, this approach also

has several limitations. First, there are a number of technical choices to make when

selecting a computational language model, and these choices require some degree of
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commitment to a theory of language. For example, the researcher has to choose whether

to estimate language statistics using a computational sentence parser or a connectionist

model. If using a parser, there are additional choices to make regarding what sort of

grammar the parser will assume, as well as what parsing algorithm will be implemented.

These choices carry with them implicit assumptions about the nature of human language

processing that researchers may not want to commit to. Second, any language model must

first be trained on a corpus of language, and this raises additional questions regarding

what constitutes an appropriate training corpus and how large that corpus must be before

the model can perform adequately. It is not uncommon for language models to be trained

on a corpus of only about 1 million words—far smaller than the vast amount of language

experience adult humans have. Finally, computational language models tend to assume

that the sentences they take as their input are independent from one another. This makes

it problematic to derive accurate metrics for words appearing in connected texts, in which

the sentences within the text refer to information from previous sentences.

The goal of this study was to examine the contributions of surprisal and entropy reduc-

tion to word-by-word reading times. Our approach differs from previous treatments of

this topic in two important ways. First, we used eyetracking as our measure of online sen-

tence processing. In contrast to the slow, unnatural button-press responses required in

self-paced reading, the use of eyetracking allows participants to read text naturally, which

includes access to parafoveal preview information and the ability to regress to previous

portions of the text that are denied in self-paced reading. In addition, eyetracking pro-

vides a much more dynamic measure of reading, including rich information about the

time course of processing from early stages of word recognition to later stages of text

integration. Second, we derived our measures of surprisal and entropy reduction from a

cumulative cloze task rather than a computational language model. In the cumulative

cloze task (see also Luke & Christianson, 2016), participants are given the first word of a

paragraph and are instructed to guess what they think the most likely second word is.

The second word is then revealed, and the task is to guess the third word, and so on. This

approach has a number of advantages over both the traditional cloze task and the estima-

tion of complexity metrics from computational language models. First, we can use human

predictability data at each word of a text to compute surprisal and entropy reduction in a

completely theory-neutral manner without having to assume a grammar, implement a

parsing algorithm, or choose a training corpus. Second, this approach allows us to use

naturalistic sentences as opposed to the artificially constraining sentences that tend to be

used in experiments employing the traditional cloze task. This avoids the concern that

participants might notice something unusual about the sentences and adapt to the task or

develop explicit processing strategies. Finally, this approach allows us to collect accurate

word-by-word predictability data for sentences appearing in connected, meaningful dis-

course as opposed to sentences in isolation.

In this study, values of surprisal and entropy reduction for whole paragraphs of text

were derived from a large sample of participants who completed the cumulative cloze

task. These paragraphs were then read by another sample of participants whose eye

movements were recorded. In selecting our materials, we chose paragraphs that
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represented a wide range of difficulty levels, from easy texts appropriate for children to

difficult texts appropriate for college-educated adults. We selected paragraphs represent-

ing a wide range of text difficulties to test the hypothesis that variability in surprisal

and entropy reduction might have different effects on reading times depending on the

global difficulty level of the text. One possibility is that the relationship between word-

by-word complexity metrics and reading times may become stronger as texts become

more challenging, perhaps reflecting the lower frequency of the words and sentential

contexts encountered. Another possibility is that the effects will become weaker, per-

haps because more difficult text makes prediction harder, leading readers to give up on

the prediction strategy. Finally, the relationship between surprisal and entropy reduction

on reading times might be unaffected by text difficulty, suggesting that their effects are

not specific to easy or hard texts, but instead hold across a wide range of difficulty

levels.

2. Method

2.1. Cumulative cloze task

2.1.1. Participants
A total of 1,600 participants were recruited through Amazon’s Mechanical Turk. Indi-

viduals were eligible to participate if they reported that they were 18 years of age or

older, indicated that English was their native language, and their IP address registered as

being within the United States.

2.1.2. Materials
Forty short passages of text were adapted from standardized reading comprehension

tests: the Gray Oral Reading Tests—Fifth Edition (GORT) (Wiederholt & Bryant, 2012)

and the Gray Silent Reading Tests (GSRT) (Wiederholt & Blalock, 2000). The GORT

and GSRT were chosen because they include passages of text that represent a wide range

of difficulty levels. Texts were trimmed to be between 46 and 77 words long. As an

objective measure of global text difficulty, we calculated the Flesch–Kincaid grade level

of each paragraph (Kincaid, Fishburne, Rogers, & Chissom, 1975), which is computed

from the average length of sentences and average number of syllables per word in the

text. The score is meant to correspond roughly with the number of years of education

required to understand the text. The 40 passages used in this study had Flesch–Kincaid
grade levels ranging from 1.80 to 17.46 (M = 10.38). Across all texts, there were 1,152

unique words with 2,405 word tokens.

2.1.3. Procedure
After agreeing to participate, participants were redirected to an online survey. The

instructions read: “In this task, you will be predicting the upcoming words of a para-

graph. You will be given the first word of a paragraph, and your task is to predict what
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you think the next word most likely is. Type your prediction into the box, and then click

the button to advance to the next screen. You will then see what the actual next word of

the paragraph is, and you should again make a prediction about what you think the next

word is most likely to be. You will do this for the entire paragraph.” After advancing past

this initial instruction screen, participants saw the first word of a paragraph with a

response box below it. At the top of this page, and on every subsequent page, was an

abbreviated set of instructions, reminding participants to “Guess the most likely next

word based on the words you have seen so far.” Participants typed their guess into the

box and advanced to the next screen, at which point they saw the first two words of the

paragraph with a response box below it. This continued for the entire paragraph such that

participants entered predictions for all words of the paragraph except for the first word.

Participants could not advance to the next page until entering a response in the box, nor

could they go back to their previous responses.

Forty participants were randomly assigned to each of the 40 paragraphs, which resulted

in there being an equal number of cloze responses for each word across all texts.

2.2. Eyetracking task

2.2.1. Participants
Thirty-two students at the University of California, Davis participated in exchange for

course credit. They all reported normal or corrected-to-normal vision and indicated that

English was their native language.

2.2.2. Materials
Target passages for the eyetracking task were the same 40 passages used in the cumu-

lative cloze task, with all words clearly visible.

2.2.3. Procedure
Eye movements were recorded with an EyeLink 1000 Plus system (SR Research).

Viewing was binocular, but only the right eye was tracked, at a sampling rate of

1,000 Hz. A chinrest was used to minimize head movement. The eyetracker was cali-

brated at the beginning of each session and recalibrated throughout the session as needed.

At the start of each trial, a fixation point was presented near the upper left corner of the

screen, marking the place where the first word of the paragraph would appear. Once gaze

was steady on this point, the experimenter presented the paragraph. After reading the

paragraph, the participant pressed a button on a handheld console, which caused the para-

graph to disappear and a true-false comprehension question to appear in its place. Partici-

pants pressed one button to answer “true,” and a different button to answer “false.” Mean

comprehension question accuracy was 92%. After the participant answered the question,

the fixation point for the next trial appeared.

Participants were first presented with two filler paragraphs that were not analyzed.

After this warm-up block, the 40 target passages were presented randomly.
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2.3. Analysis

Predictions in the cumulative cloze task were compared to the actual target words to

compute a cloze probability score for every word. We then computed the negative log

of each cloze probability to convert these scores to surprisal values. Cloze probabilities

of zero cannot be converted to a logarithmic scale. Accordingly, we made an a priori

decision to replace these values with half the value of the lowest nonzero cloze value

before converting them to surprisal values (i.e., the lowest nonzero cloze value possible

in this study was .025, and so cloze values of zero were converted to .0125). To com-

pute entropy reduction, we first tabulated the distribution of guesses at each word about

the upcoming word and then used these values to compute entropy according to the

standard formula (see above). Entropy reduction was computed as the difference in

entropy between the current word and the previous word. Cases where entropy

increased from wi�1 to wi were coded as zero, in keeping with a central proposal of the

entropy reduction hypothesis that increases in uncertainty do not affect processing

(Hale, 2006).

For the eyetracking data, fixations were excluded from the analysis if they were shorter

than 60 ms, longer than 1,200 ms, if they occurred during a track loss, or if they were

immediately preceded or followed by a blink. In total, 12.4% of all fixations were

excluded from the analysis. In addition, we removed the first and last words of each para-

graph from the analysis, as well as proper nouns. For all remaining words, we computed

four standard eye-movement measures that reflect a range of processing stages (Rayner,

1998). First fixation duration is the duration of the initial, first-pass fixation on a word,

regardless of whether there are subsequent first-pass fixations on the word. Single fixation
duration is the duration of the initial, first-pass fixation on a word, provided that the word

received only one first-pass fixation. These two measures are thought to reflect the earliest

stages of word recognition, including processes of perceptual encoding and initial lexical

access. Gaze duration is the sum of all first-pass fixations on the word and is believed to

index later stages of lexical access and the beginning stages of semantic integration.

Regression-path duration is the sum of all fixations beginning with the initial fixation on

a word and ending when gaze is directed away from the region to the right. Thus, regres-

sion-path duration includes time spent rereading earlier parts of the sentence before the

reader is ready to move to the right of the current word. Regression-path duration is gen-

erally thought to reflect processes related to higher level text integration difficulty.

The data were analyzed using linear mixed-effects regression models in the lme4 pack-

age (Bates, Maechler, & Bolker, 2012) in R. Separate models were constructed for each

reading-time measure. Each of these models included fixed effects of log-transformed

word frequency (SUBTLEXus database; Brysbaert & New, 2009), word length, the

Flesch–Kincaid grade level of the paragraph in which the word appeared (i.e., text diffi-

culty), surprisal, entropy reduction, and the interactions between surprisal and text diffi-

culty as well as entropy reduction and text difficulty. All predictors were mean-centered.

The random-effects structures included random intercepts for subject, word, and para-

graph, as well as by-subject random slopes for all fixed effects. Random slopes for the
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interaction terms were removed from the models because the models would not converge

otherwise. Statistical significance was computed using the lmerTest package (Kuznetsova,

Brockhoff, & Christensen, 2013) in R.

3. Results

We observed a moderate, positive correlation between surprisal and entropy reduction

(r = .29, p < .001). This relationship is depicted in Fig. 1. Results of the reading-time

analyses are presented in Table 1. Consistent with previous findings, we observed robust

effects of word frequency and word length on all reading-time measures, such that

increases in word frequency were associated with decreased reading times, whereas

increases in word length were associated with increased reading times. Beyond the word-

level effects of frequency and length, we also observed a significant main effect of text

difficulty in all reading-time measures, such that increases in text difficulty were associ-

ated with increased reading times.

Crucially, we also observed significant effects of surprisal and entropy reduction.2 The

effect of surprisal was significant across the eye-movement record, such that increases in

surprisal were associated with increased reading times in all reading-time measures. In

contrast, the effect of entropy reduction was only significant in the early measures of first
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fixation duration and single fixation duration, such that increases in entropy reduction

were associated with increased reading times. The effect of entropy reduction was not

significant in the later measures of gaze duration and regression-path duration. Fig. 2

plots the relationships between surprisal and entropy reduction and each of the four read-

ing-time measures. Finally, there were no significant interactions between surprisal and

text difficulty, nor entropy reduction and text difficulty in any reading-time measure. This

lack of an interaction between complexity metrics and text difficulty held despite finding

a significant positive relationship between average surprisal value and text difficulty

(r = .72, p < .001), as well as a similar trend for a positive relationship between average

entropy reduction and text difficulty, although this latter effect was not significant

(r = .26, p = .11).

As mentioned above, we made an a priori decision to replace cloze values of zero with

half the value of the lowest nonzero cloze value before converting them to surprisal val-

ues (i.e., cloze = .0125). To ensure that our core findings did not depend on this decision,

we conducted three sets of supplemental analyses in which all models were rerun treating

values of zero cloze differently in each model. Specifically, Supplemental Model 1 trea-

ted zero cloze as being equal to the lowest nonzero cloze value (i.e., cloze = .025). Sup-

plemental Model 2 used values that were two times lower than the values used in our

original model (i.e., cloze = .00625), and Supplemental Model 3 used values that were

four times lower than the values used in our original model (i.e., cloze = .003125). For

all models, the effects of surprisal and entropy reduction on reading times were the same

as the results reported here—that is, effects of surprisal emerged in all eyetracking mea-

sures, whereas effects of entropy reduction emerged in first fixation duration and single

fixation duration. Some of the models also produced evidence of interactive effects

between complexity metrics and text difficulty. In Supplemental Models 2 and 3, there

was an interaction between entropy reduction and text difficulty for gaze duration. In

Supplemental Model 3, there was an interaction between surprisal and text difficulty for

first fixation duration. These effects were all fairly weak, but the pattern for all interac-

tions was such that there tended to be stronger effects of the complexity metric for easier

rather than more difficult texts. The results of these models are available as supplemen-

tary material.

To assess collinearity in our models, we computed variance inflation factors (VIFs) for

each predictor in each model.3 All VIFs were less than 2, which is well below the recom-

mended limit of 10 (Cohen, Cohen, West, & Aiken, 2003). To further probe the relative

contributions of surprisal and entropy reduction, we conducted exploratory analyses in

which our primary models from Table 1 were rerun, once with entropy reduction

removed, and again with surprisal removed. The results of these analyses are presented as

supplementary materials. The patterns of effects presented in Table 1 were unchanged by

these modifications. That is, the effect of surprisal was significant across the eye-move-

ment record even when entropy reduction was left out of the model, and the effect of

entropy reduction was significant in first fixation duration and single fixation duration

when surprisal was left out of the model.
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Fig. 2. Relationships between surprisal (left) and entropy reduction (right) on first fixation duration (a), single

fixation duration (b), gaze duration (c), and regression-path duration (d).
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4. Discussion

The current work replicates previous findings demonstrating that surprisal and entropy

reduction both contribute to variation in reading times (Frank, 2013; Linzen & Jaeger,

2016; Wu et al., 2010). Importantly, however, our approach extends these findings in sev-

eral important ways. First, our use of eyetracking as a measure of sentence processing

allowed us to examine the time course of these effects during natural reading while

avoiding the unnatural button-press responses associated with self-paced reading. Our

results indicate that whereas increases in surprisal are associated with increases in reading

times across the eyetracking record, increases in entropy reduction were only associated

with increases in first fixation duration and single fixation duration. This pattern seems to

suggest that readers experience a longer lasting processing slowdown when a word in the

text is unexpected, compared to when a word reduces uncertainty. Although the effect of

entropy reduction was not significant in measures reflecting later stages of processing, the

overall pattern nevertheless seems consistent with the pattern observed in earlier measures

(see Fig. 2). The fact that the effect of entropy reduction was not statistically significant

in these later measures of processing suggests that variability in gaze duration and regres-

sion-path duration is better accounted for by other factors. Taken together, the dissocia-

tion of surprisal and entropy reduction on early versus later measures of processing has

implications for models of eye-movement control during reading (e.g., Engbert et al.,

2005; Reichle et al., 2003), which aim to explain the time course over which different

linguistic properties of words influence the decision of when to move the eyes. Although

complexity metrics like surprisal and entropy reduction have not yet been incorporated

into these models, the dissociation in time course of processing reported here suggests

that this may be a useful implementation.

In addition to testing for main effects of surprisal and entropy reduction, we also

examined whether these measures would show different effects in easy versus more chal-

lenging paragraphs. Although we observed main effects of text difficulty in all reading-

time measures, there was no indication that this factor interacted with surprisal or entropy

reduction, suggesting that surprisal and entropy reduction effects are not limited to either

the easiest or most difficult texts, but instead that these effects generalize across a range

of paragraph difficulty levels.4 The lack of a significant interaction suggests that our par-

ticipants employed similar processes of linguistic prediction across texts that were very

easy, as well as texts that were much more challenging. Thus, even though the more chal-

lenging texts contained infrequent words and longer, more complex sentences, readers

nonetheless showed similar responses to words that were relatively higher in surprisal or

entropy reduction, regardless of the broader linguistic context. An interesting question for

future research might involve examining how individual differences among readers in

various measures of linguistic or cognitive performance could modulate the relationships

among global text difficulty and word-by-word complexity metrics on reading times.

Although previous work has tended to estimate information complexity metrics from

computational sentence parsers and other types of statistical language models, we esti-

mated surprisal and entropy reduction using human predictability data in a cumulative
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cloze task. This approach has a number of advantages in that it allows us to compute

complexity metrics in a completely theory-neutral manner, it allows us to use naturalistic

sentences as opposed to the artificially constraining sentences that are common in studies

using the traditional cloze method, and it allows us to study sentences in connected texts,

as opposed to sentences in isolation. Recent work by Luke and Christianson (2016) has

also used the cumulative cloze task to assess the relationship between lexical predictabil-

ity and eye-movement measures. Our finding that surprisal had robust effects across the

range of eye-movement measures replicates their findings. Although Luke and Christian-

son also reported several additional results, including cases of misprediction, they did not

conduct analyses of entropy reduction. Our finding that surprisal and entropy reduction

independently contribute to eye-movement measures during reading serves as a further

extension of the cumulative cloze task to address important questions about the nature of

prediction during language processing.

One potential downside of using the cumulative cloze procedure to estimate complex-

ity metrics is that it limits the scope over which entropy reduction can be calculated.

Hale’s (2003, 2006, 2011) proposal and its implementation in computational models con-

ceptualize entropy as the comprehender’s degree of uncertainty regarding all possible

upcoming sentence structures, derived over multiple parse trees. In contrast, the nature of

the cumulative cloze task used here necessitates that entropy reduction be calculated over

next-word entropy as opposed to full entropy, given that participants only predicted the

single next word of the sentence. This implementation of entropy reduction may explain

why the effect of this metric on reading times was rather small, compared to the larger

effects that were observed for surprisal (see Table 1). Nevertheless, we believe our mea-

sure of entropy reduction in this study acts as a useful approximation of the sort of

entropy reduction measure proposed by Hale. That is, even though we do not have access

to participants’ predictions about the entire upcoming sentence, their guesses about the

next word still reflect important information about how they think the sentence is unfold-

ing. Specifically, as the current sentence representation becomes clearer, the range of

potential options for the next word should narrow, leading to reduction in entropy.

It is also important to note that the current findings cannot distinguish confidently

between theoretical accounts based on preactivation of a specific word before the reader

encounters it, as opposed to accounts that instead attribute “prediction” effects to facili-

tated integration of a word with its preceding context. However, a strong version of either

of these frameworks seems implausible in light of these findings. The notion that readers

engage in robust, all-or-none prediction of a single word seems unlikely, given that subtle

variations in surprisal had significant effects on reading times, even for words at the high

end of the spectrum (i.e., words with the lowest cloze values that were rarely predicted).

Likewise, a strict integration account seems unlikely, given that effects of surprisal and

entropy reduction emerged in first fixation duration and single fixation duration—mea-

sures that are thought to reflect the earliest stages of perceptual encoding and lexical

access. Thus, the results are most readily consistent with the view recently put forth by

Staub (2015) arguing that predictability effects in reading emerge from diffuse preactiva-

tion of sets of likely words in a pattern of graded activation (see also Ferreira & Lowder,
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2016; Frisson, Harvey, & Staub, 2017; Huettig & Mani, 2016; Kuperberg & Jaeger,

2016; Luke & Christianson, 2016). Such a view may place serious constraints on the

extent to which prediction can be viewed as the “engine” that drives cognition (Clark,

2013).

Importantly, this study serves to link information complexity metrics to mechanistic

accounts of cognition in a more naturalistic way. Metrics such as surprisal and entropy

reduction are useful in that they can be generated word-by-word according to the specifi-

cations of a language model, which can then be related to behavioral or neural processing

data to assess the viability of that model (Armeni, Willems, & Frank, 2017; Brennan,

2016; Hale, 2016). As noted above, though, these metrics tend to be estimated using

computational parsers or other statistical language models. Computational language mod-

els are associated with several drawbacks, one of the most serious being that they tend to

assume that the sentences they take as their input are independent from one another. This

limits the extent to which algorithmically derived information complexity metrics can be

applied to connected, naturalistic language. In contrast, a major benefit of the cumulative

cloze task used here is that it allows us to derive surprisal and entropy reduction for each

word across multi-sentence, connected texts using human judgments. Thus, the combina-

tion of human predictability data across more naturalistic texts advances the goal of

bridging information theory and online measures of language processing.

In sum, these results demonstrate that effects of lexical predictability on reading times

are not limited to strongly predictable versus unpredictable words that tend to appear in

experiments using the traditional cloze task. Instead, the cumulative cloze task used here,

combined with analyses of data from normal reading in which every word is a potential

data point, provides a much more accurate assessment of predictability effects in sentence

processing, extending beyond the domain of artificially constraining stimuli. Furthermore,

the results demonstrate independent contributions of surprisal and entropy reduction to

explaining variability in reading times, providing additional evidence that these informa-

tion complexity metrics capture unique aspects of lexical predictability.
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Notes

1. Entropy is closely related to the idea of contextual constraint, which is often opera-

tionalized through the cloze task. A point in the sentence where no single word is

highly predictable is said to be low in constraint, which corresponds to a state of

high entropy.
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2. Analyses examining the effects of raw entropy on reading times revealed no signifi-

cant effects in any eye-movement measure.

3. We thank an anonymous reviewer for this suggestion.

4. However, see supplementary material for exploratory analyses that yielded some

evidence of interactions between complexity metrics and paragraph difficulty.
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